Spatial occurrence and colonisations in patch-tracking metapopulations: local conditions versus dispersal

نویسندگان

  • T. Snäll
  • P. J. Ribeiro
  • H. Rydin
چکیده

We studied the relative importance of local variables and dispersal for the occurrence and colonisation of the epiphytic bryophytes Orthotricum speciosum (spore dispersed), and O. obtusifolium (spore and asexual gemmae) on aspen trees (‘patches’) in two forest landscapes (one old-growth and one fragmented) using multiple logistic regression. The relative importance of dispersal was quantified as the reduction of residual deviance for a connectivity variable. In modelling dispersal, we assumed that trees with low local abundance were recent colonisations, and that trees with high local abundance were diaspore sources for colonisation. The occurrence of O. speciosum in the fragmented landscape was most affected by shading, but also by connectivity, aspen diameter and vitality. In the old-growth landscape, connectivity was the single most important variable for recent colonisations, but its effect was lower than the sum of the effects of all local environmental variables. The occurrence of O. obtusifolium in the fragmented landscape was related to similar variables but the relative importance of these variables was different, and connectivity did not affect the probability of a recent colonisation in this species. We describe the epiphyte-tree system in the patch-tracking metapopulation model. In this model colonisations are distance dependent, but in contrast to the classical metapopulation model local extinctions are caused by deterministic patch destruction – once the epiphyte has colonised the tree it remains until the tree dies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intermediate dispersal principle in spatially explicit metapopulations.

Aim of this paper is to assess the fate of metapopulations described by spatially explicit models. To this end, we first present an interacting particle system (IPS) where individuals of a single species compete logistically at the local scale and can move among patches according to various dispersal kernels. As the IPS is a complex stochastic system, it is impossible to determine the persisten...

متن کامل

Impact of dispersal on the stability of metapopulations.

Dispersal is a key ecological process that enables local populations to form spatially extended systems called metapopulations. In the present study, we investigate how dispersal affects the linear stability of a general single-species metapopulation model. We discuss both the influence of local within-patch dynamics and the effects of various dispersal behaviours on stability. We find that pos...

متن کامل

Stabilization through spatial pattern formation in metapopulations with long-range dispersal

Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the sta...

متن کامل

A demographic, spatially explicit patch occupancy model of metapopulation dynamics and persistence

Patch occupancy models are extremely important and popular tools for understanding the dynamics, and predicting the persistence, of spatially structured populations. Typically this endeavor is facilitated either by models from classic metapopulation theory focused on spatially explicit, dispersal-driven colonization–extinction dynamics and generally assuming perfect detection, or by more recent...

متن کامل

Dispersal and metapopulation stability

Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003